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Shapes of strongly absorbed polyelectrolytes in poor solvents
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The pearl necklace instability has been predicted to occur for single polyelectrolyte chains immersed in an
incompatible (or poor) solvent, but still direct imaging of this chain conformation is not conclusive. We
therefore examine how a surface may interact with the polyelectrolyte to, possibly, inhibit this instability. We
show from explicit calculations that for strongly absorbed polyelectrolyte chains another conformation of the
chain is stable in parts of the diagram of states. We support this calculation with more rigorous numerical,
self-consistent mean field calculations which exhibit both elliptical globules and a pseudo pearl necklace

structure.
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I. INTRODUCTION

Chain molecules which bear charged monomers, called
polyelectrolytes, have widespread applications but only rela-
tively recently have received serious attention. The shape (or
conformation) of the polyelectrolyte chain is one of the most
fundamental physical properties, since the polyelectrolyte’s
applicability stems directly from this conformation. One of
the most dramatic manifestations of this is the pearl necklace
instability predicted first by Kantor and Kardar [1] and elu-
cidated by Dobrynin er al. [2]. Since the original prediction
of this unusual shape there have been numerous experiments
on verifying the model. In most cases results have to be
related to competing models, i.e., an elongated cylindrical
morphology (or cigar) or a pearl necklace structure and the
validity of either model is then inferred from these compari-
sons [3]. Thus the results, themselves, do not unequivocally
demonstrate a pearl necklace structure, but rather give fur-
ther evidence to support the prediction. On the other hand,
direct experimental observations such as with atomic force
microscopy or surface force apparatus have been more in-
conclusive. Direct imaging of single polyelectrolyte chains,
involve a surface which often absorbs the chain either par-
tially or completely [4]. This implies surface phenomena are
important in determining the final conformations of absorbed
polyelectrolyte chains, which are imaged in these experi-
ments. Therefore we address the following question in this
study: Will a polyelectrolyte in a poor solvent, but strongly
absorbed on a flat two-dimensional surface, still exhibit a
Rayleigh-like instability? Furthermore, we investigate the
possible shapes of the absorbed chain. The results presented
here demonstrate that surfaces do indeed play an important
role and can affect the pearl necklace morphology.

The bulk behavior of single polyelectrolyte chains in a
poor solvent was originally studied by Khokhlov [5]. At low
charge fraction, f, the globule takes on a spherical shape.
Above a critical f, Khokhlov proposed the preferred shape of
the charged globule should be an extended cylinder. How-
ever, subsequent work [1,2] showed such a conformation
was unstable to capillary wave fluctuations and ultimately
the globule deforms to a pearl necklace with two beads
(called a dumbbell). For increasing f this dumbbell could

1539-3755/2007/75(5)/051802(8)

051802-1

PACS number(s): 82.35.Rs, 68.35.Md, 68.47.Mn

further split into a necklace with three beads and so on.
These shapes represent a delicate balance between the two
major contributions to the globules free energy—the electro-
static repulsion between charged monomers, which promotes
an extended conformation, and the surface tension between
polymer and solvent which promotes collapse to a sphere.
For direct imaging of such chains, the surface must absorb
the chain so that there exists an overall preference of the
polymer for the surface. The surface on which the polyelec-
trolyte is absorbed is assumed to be uncharged [6]. As a
consequence of the charged globule in the vicinity of this
surface, the Coulomb interaction will be modified from the
bulk case. The presence of a dielectric boundary, being the
x-y plane located at z=0, implies a discontinuity in the per-
pendicular component of the electric field [7]. The Coulomb
interaction between a charge g, (which is at r and in the
half-space z=0) and a second charge g, (which is at r’ also
in the half-space z=0) is then given by [8]

V(I’ l',) — 91492 1 (1 - 6,/6) 1 )
’ e LIr=r'[ (1+€7€)\(r-r')*+4zz’

(1)

Our present problem now applies to two special limits of the
above formula. First, the dielectric substrate has low dielec-
tric constant in comparison to a typical solvent (for example,
water). A typical value for the dielectric constant of water
(with respect to a vacuum) is around 80, while that of mica
(a typical AFM/SFA substrate) is around 5. Thus €'/e<<1.
Secondly, we assume the monomers are on the surface of the
dielectric surface so that z=z'=0. With these two assump-
tions the Coulomb interaction between two charges at r and
r’, such that the two charges have zero z component, is just

2
V(r,r’)=q—1q2,.
er-r’'|

()

We therefore see that the 3D Coulomb interaction is modi-
fied by a multiplicative factor of 2, so that the functional
dependence of the Couolmb potential is the same in 2D as in
3D. Also, as the polyelectrolyte nears the surface, charge will
build up. Cohen-Stuart et al. [9] have considered this prob-
lem and showed this can lead to a kinetic slowing down of
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polyelectrolyte absorption. For a few reasons this may not be
important for the case studied here. First, the chains we con-
sider have a low net charge and so charge build up at the
surface will be small. Secondly, our globule is assumed to be
spread rather thinly over the surface and due to the short
range surface attraction there should still be a net gain in
absorbing on the surface. Finally, since we are interested in
equilibrium effects in this paper, the final absorbed state of
the polyelectrolyte should not be affected by this (small) re-
pulsive barrier.

Once the polyelectrolyte is strongly absorbed to the sur-
face the important question is whether the isotropic shape of
the globule (in this case either a circle or a spherical dome) is
stable in comparison to the pearl necklace structure? If not,
what new conformations of the chain are possible? As a clue
to what may happen, we recall that although a stretched
(neutral) polymer in a poor solvent is unstable to capillary
wave fluctuations, i.e., the Rayleigh—Plateau instability [10]
a strongly absorbed (neutral) polymer is not [11,12]. We use
two independent methods to determine the shape of the
charged globule—explicit comparison of the globule’s free
energy for a few different shapes and self-consistent mean
field theory (SCF). Both methods agree on the final shapes.

Since we are interested in the poor solvent regime, below
the O temperature of the chain, we define the reduced tem-
perature, 7, where 7= (0 —T7)/0 and T is the actual tempera-
ture [2]. When a droplet of liquid absorbs onto a flat surface
the contact angle, 6 is given by a balance of three surface
tensions—polymer-solvent 7ypg, polymer-surface, ypp, and
the solvent-surface 7ygr. The contact angle then satisfies
cos 0=(vsr— vpr)/ Yps. For a hydrophobic surface and hydro-
phobic polymer, which is the case we are interested in here,
we have ygr= ¥ps> ypr. This implies the contact angle is
cos O=1- 0, where 0= ypp/ yps<<1. We denote the number
of monomers in the polymer chain by N and each monomer
has size b. The droplet assumes the shape of the dome of a
sphere of radius R and volume V,=mR2-3cos 6
+cos® 0]/3. At the reduced temperature, 7, the globular vol-
ume is Nb*/ 7, so that the radius of the sphere is fully deter-
mined in terms of N, 7, and 6. As the contact angle dimin-
ishes the droplet takes on a flatter aspect. This cannot
continue indefinitely. There is an upper limit to the radius of
the sphere. Beyond this limit the droplet adopts the shape of
a flat layer or pancake of thickness &, equal to b/ 7 (i.e., the
thermal blob size [2]), and radius R,=(N/m)"?b. At this
stage the problem becomes two-dimensional. Thus we find
there exists a critical N, denoted N, below which the sys-
tem is two-dimensional. This is given by N
=97 sin® 8772[2-3 cos H+cos® 2. For small 6, we find
Nt =63.6(70)>=31.8(7 )"\ If the surface tension ratio &
is even smaller, the thermal blob deforms in the direction
perpendicular to the surface, i.e., the thickness of the pan-
cake decreases from b/ 7 according to h=&"*(N/w7)'b, un-
til its minimum thickness of b. Thus the two-dimensional
model is important for relatively strong absorption (i.e., &
small) and such globules have been observed experimentally
[13]. Finally, there are other effects which may stabilize the
thickness of the pancake such as thermal fluctuations or long
range interactions, which are beyond the scope of this paper.
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II. EXPLICIT FREE ENERGY

To begin we consider the stability of an elongated (ellip-
soidal) globule in bulk solution. We shall see an ellipsoidal
globule is stable, compared to a spherical globule, only for
relatively large f and correspondingly large anisotropy of the
globular shape. The argument given here is similar to that
given by Kantor and Kardar [1], but we reproduce it here
because it is not trivial and forms the basis for the absorbed
globule analysis.

To consider the stability of an ellipsoidal globule in bulk
(three-dimensions) solutions we determine the free energy of
the droplet, as initially proposed by Kantor and Kardar [1]
and Dobrynin et al. [2]. The two major contributions to the
free energy of the condensed globule is a Coulomb (repul-
sive) energy and a surface energy. (In this case, entropic
energy of the polymer chain can be shown to be negligible.)
The Coulomb energy for any particular geometry is

F, =kBTlBN2f2Jf ! dr dr’ (3)
coul V2 1% V2|1'—1"| '

where r represents any point within the globule, f is the
fraction of charged monomers, V represents the volume of
the globule, and although the volume is constant the geom-
etry can change. The extra factor of 2 accounts for double
counting of pairs. The polyelectrolyte is considered uni-
formly charged, so that charge density is constant throughout
the globule. With this assumption, the Coulomb energy may
be written in terms of the Bjerrum length, defined as [j
=g/ (e,kpT), where g is the electronic charge, €, the dielec-
tric constant of the polymer and kzT is the thermal energy.
For certain special cases the integrals in Eq. (3) can be evalu-
ated exactly. For a sphere of radius R we obtain
3kpTlzf>N?/(5R) and since the volume of a sphere is V
=47R3/3, the Coulomb energy of the sphere can be written
as Foy=3kpTlzf*N*(4m)'3/[5(3V)"3]. On increasing charge
fraction, the sphere would be expected to elongate into a
prolate spheroid, with a long axis R and two shorter axes,
each of the same length, c¢. The volume of the prolate spher-
oid is V=4mR3(1-¢?)/3, where the eccentricity, e, is defined
as e*=1-c?/R?. This volume is constant so that as e in-
creases, R must also increase. The Coulomb energy of the
prolate spheroid is

Feou=Feoll —6’2)1/3L1n{1+e] (4)
2e l-e

The surface energy of the droplet is just F,+=y.A, where y
is the surface tension and A is the surface area of the glob-
ule. Once again, for simple geometries this area is given
precisely, i.e., for a sphere is 47R? and for a prolate spheroid
is 27R*(1-e?)[1+(1—¢*)"2e ! arcsin e]. The surface en-
ergy of a spherical droplet can be written as Flg
=4mkTo(3V/4mwh3)?3, where o= yb?/(kzT). Thus the pro-
late spheroid’s surface energy is

(5)

arcsin e ]
b

1
Fout=Fso(1 =€) ~| 1 4 ——
surf SO( e ) ) e\,"l _ 62)

while the total free energy of a prolate spheroid is
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FIG. 1. Scaled free energy, F/Fgyee, of a bulk (three-

dimensional) charged droplet of liquid (of either spherical geom-
etry, e=0, or a prolate spheroid geometry, ¢ # 0) in a poor solvent
versus eccentricity of the droplet. For this plot we use N=100, o
=1, u=[,/b=2 and charge fractions of f=0 (dotted), f=0.17
(dashed), f=f.;=0.17656 (full), and f=0.18 (dot-dashed). Note
that a prolate spheroid (with nonzero eccentricity) only becomes
stable for relatively large f and at very large values of e, when the
prolate spheroid would be almost cigarlike in shape.

(1-¢e2)'3 arcsin e Feo l+e
FPro]ate = 2 Fgo| 1+ e\/m + 7 In l-—¢ ’
(6)

Note that embedded in Fq is f, the fraction of charged
monomers along the chain. We now plot this free energy for
N=100, o=1, u=1,/b=2 and various values of f (Fig. 1), as
a function of eccentricity, e. (In fact we scale the energy with
respect to a spherical globule’s energy, i.e., Fypere=Fso
+Fo.) At small f we find the minimum is always at e=0. As
f increases a secondary minimum develops in the free energy
curve, at large e. Eventually at a critical charge fraction, f
this second minimum has an energy equal to the minimum at
e=0. It is important to note, this occurs at very large eccen-
tricity, which implies the globule will be highly extended,
almost cigarlike in shape. In this case, f.;=0.17656 and the
corresponding e=0.944. Note, on increasing charge the
shape of the globule would appear to change discontinuously
from a sphere (e=0) to a highly eccentric prolate spheroid
(e=0.944). These results are typical of the (bulk) three-
dimensional case—the prolate spheroid globule becomes
stable for sufficiently large f, but has an extreme eccentricity.

Clearly, before the prolate spheroid globule becomes
stable, a dumbbell may have a lower free energy. A dumbbell
consists of two (small) spheres, of radius r connected by a
long, thin, cylindrical string of length L and radius b/ 7 [2].
This has been shown previously by Kantor and Kardar [1]
and also Dobrynin ef al. [2], so we refer the interested reader
to these articles. As a result, in bulk solutions, the condensed
globule either takes the shape of an (isotropic) sphere or a
dumbbell, with spherical beads. As the charge of the polymer
increases the dumbbell will deform to a three-bead necklace
and so on. In summary, in bulk solutions, within the simplest
model which only includes electrostatic and surface energy
contributions, the (anisotropic) prolate spheroid morphology
of a condensed globule is never stable.
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A. Strongly absorbed condensates

For strongly absorbed polymer condensates, i.e., in two
dimensions, this is not the case. Recall, from the Introduc-
tion, we are dealing with strongly absorbed globules which
will be of constant thickness (a layer or pancake) on the flat
surface. We now concentrate on the shape of the globule in
the plane of the surface and calculate the free energy of three
different globular shapes: (i) An isotropic (circular) shape,
(ii) an elliptical shape, and (iii) a dumbbell. The advantage of
the elliptical shape over a circular one is that by elongating
the Coulomb repulsion energy reduces, which is important as
f increases. On the other hand, the advantage of the elliptical
globule over a dumbbell is that it has a lower surface energy.
In contrast to three dimensions, we shall see an elliptical
shape is stable in two dimensions.

To calculate the free energy of the two-dimensional struc-
tures we follow the same prescription as outlined above, for
the ellipsoidal globule. However, the surface energy now
corresponds to the perimeter length of the globule, since the
upper surface area of the pancakelike globule is the same for
all structures. Secondly, the Coulomb energy of the ellipse is
no longer determined by an analytic expression but, rather,
has to be calculated numerically. In addition, we calculate
the Coulomb energy of the dumbbell numerically, rather than
making any simplifying approximations. Consider first the
elliptical pancake structure. The surface energy is just Fy,
=vyPh, where vy is the surface tension and P is the perimeter
length of the globule. Note, one may argue here that the
concept of a surface tension becomes debatable as the pan-
cake’s thickness becomes smaller and smaller. While this is
strictly true, we take the view here that since all globules
have the same thickness [set by h=&3(N/m7)'b] it is the
perimeter length which is the important quantity. The perim-
eter length remains large (i.e., much larger than b) and so the
concept of a surface tension is still valid. In truth, vy should
then be referred to as a line tension, which is what Sevick
and Williams [11] called it when studying strongly absorbed
polymers on a flat surface. As described in the paper by
Dobrynin ef al. [2], we assume 7y is kgT per thermal blob so
y=kzT7/b%. The total free energy, F, is a sum of these two
terms, i.e., F=Fco,+Foys The elliptical pancake, of thick-
ness /1, has a semimajor axis /, and semiminor axis ly with
eccentricity e=+1 —li/ 1)2,2. Volume conservation for this pan-
cake implies Nb*/ 7=l h(1-e?)'%, which leaves one free
variable. (Recall, & is determined by the surface tension ra-
tio, &.) Thus the surface energy of the ellipse is

Ih
Four= 4kBTTZZEE(e) s (7)

where E(e) is an elliptical integral of the second kind [14].
The Coulomb energy is calculated numerically for this ge-
ometry via Eq. (3). The free energy for the ellipse is there-
fore minimized over the free variable (let it be e) to find the
optimally shaped elliptical globule.

The same method is used for the dumbbell structure,
where the two variables are the string length L and the radius
of the bead r (see Fig. 2). The width of a string is b/ 7 [2].
The volume constraint condition for the dumbbell case is
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FIG. 2. Schematic of a dumbbell, with beads of radius r, con-
nected by a string of length L and width b/ 7. Angle B is defined in
the text.

Nb? Lb

—=[27Tr2+——r2(,8—sin,8)}h, (8)
T T

where 8=2 arcsin([27r/b]™"). The surface energy for the

dumbbell is

Fsurf=2kBT7’2|:(27T—B)£+£:|ﬁ. )
b b

The Coulomb energy is calculated numerically via Eq. (3).
Once again one variable is eliminated (let it be L) and the
dumbbell energy is minimized over the remaining variable.
The whole minimization procedure is computed numerically
for each condensate shape.

We shall do calculations for similar parameters to Dobry-
nin et al. [2], i.e., N=100 and u=1Iyz/b=2. It is important to
realize that for strongly absorbed polymers (i.e., in 2D) the
poor solvent regime exists at higher reduced temperature 7
than for polymers in bulk solution (i.e., 3D). This was first
discussed by Joanny [15]. Thus for certain values of 7, even
though the polymer could be in the poor solvent regime in
bulk solution, it may not be so for the strongly absorbed
polymer. We therefore now determine the poor solvent re-
gime for the 2D polymer. In two dimensions, a ® polymer
has average size R,~N'b, where v=4/7 [16], while in a
poor solvent the size of the globule is (N/7)"?b. This implies
the poor solvent regime exists for 7>N'"2". For N=100 this
implies 7>0.51. (Note, for these values of N and 7, the
globule would be a pancake for §<<1/2.) We show typical
free energy curves in this region, i.e., 7=0.6 and h=b. We
plot the dimensionless free energy F/kgT versus charge frac-
tion, f for both the ellipse (bold line) and the dumbbell
(dashed line); see Fig. 3. At zero charge the ellipse (in fact a
circle) has the lowest energy. Eventually, on increasing
charge there is a crossover in energies, until at higher charge
fraction the dumbbell has lower energy. On the same graph
(right-hand scale) we plot the square of the eccentricity (dot-
dashed curve) as a function of f. In contrast to the three-
dimensional case, the isotropic (circular) droplet deforms to
an elliptical geometry with a gradually increasing eccentric-
ity, i.e., the transition, from circle to ellipse, appears to be
continuous. The eccentricity increases to e~ 0.9 (which cor-
responds to /,~3[,), just before the transition to the dumb-
bell state. Meanwhile, on increasing charge the circles,
which make up the dumbbells, diminish in size since more
polyelectrolyte is taken up by the strings. For larger & (i.e.,
h>b) the same qualitative results are evident, although the
eccentricity of the ellipse (before the transition to a dumb-
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FIG. 3. Dimensionless free energy (left-hand scale), F/kgT, ver-
sus charge fraction, f for ellipse (bold) and dumbbell (dashed) at a
reduced temperature of 7=0.6. The dot-dashed line is the square of
the eccentricity of ellipse (right-hand scale). The crossover from
ellipse to dumbbell occurs at f=~0.125 and the eccentricity of the
ellipse at this point is e?~0.9.

bell) in these cases is smaller. Such behavior is expected
since, as the pancake thickness increases, one would expect
to evolve closer to the three-dimensional (bulk solution) re-
sults.

Next we discuss the shape of the actual beads which make
up the pearl necklace. In three dimensions the beads of the
necklace are always isotropic, i.e., spherical [1]. In two di-
mensions, we question whether this is still the case. That is,
are the beads of the pearl necklace always circular? To un-
derstand what happens here we note that when a polymer
gains a nonzero net charge it can begin to deform to an
anisotropic shape, i.e., the ellipse, to accommodate the extra
electrostatic repulsion. This means a globule with a (rela-
tively) small charge relaxes to an ellipse and then, when the
critical charge is exceeded, fissions to a dumbbell. Since
each bead in the necklace is then below the critical limit to
fission, the shape of each individual bead is not always per-
fectly circular but, rather, can also be of an elliptical shape.
This effect is shown quite dramatically in our numerical cal-
culations (see Figs. 4-6). Therefore we predict that the
beads, which form the pearl necklace, can also have an el-
liptical shape.

III. SELF-CONSISTENT FIELD METHOD

We now proceed to another method to analyze the shape
of these strongly absorbed polyelectrolyte chains. The impor-
tance of implementing such a method is the following. We
have so far assumed certain geometries for the polyelectro-
lyte chain, viz. ellipse and dumbbell, and shown that the
ellipse is stable in certain parts of the diagram of states.
However, we have imposed these geometries—we would re-
ally like to now implement techniques which do not assume
any particular geometrical bias. We simply input the impor-
tant molecular parameters and the particular (minimum free
energy) structure should evolve from the calculation. The
SCF method [17-19] is ideal for this and, as we shall see,
yields detailed information on the globular shape. This is a
real-space SCF technique which, for our present purposes of
identifying unknown morphological structures, is much pre-
ferred to a basis-function method. Although the basis-

051802-4



SHAPES OF STRONGLY ABSORBED POLYELECTROLYTES...

30 30

0 15 30 0 15 30

(a) (b)

PHYSICAL REVIEW E 75, 051802 (2007)

0.8
0.6
0.4
0.2
0 15 3
(c) (d)

FIG. 4. (Color online) SCF results for N=50, =1, u=2, €,/€,=1.5 and values of « (from left to right) (a) @=0.0, (b) 0.163, (c) 0.17,
and (d) 0.23. On increasing charge fraction we see a circular globule, then an elliptical globule, a “figure-8” and finally a strip. The scale bar
on the extreme right gives the density to shading equivalence and the length scale is in units of b.

function method may give information on the absolute sta-
bility of a particular structure compared with another one, it
is not useful when searching for unknown structures. In ad-
dition, we do not assume the dielectric constant is the same
in polymer and solvent phases. Rather, these two phases have
different dielectric constants and the overall dielectric con-
stant at any point is dependent on the density of the phase at
the particular point in space.

In the SCF method the important quantity is the probabil-
ity distribution function, g,(r,?) for a chain of N monomers
in total and whose rth monomer is at r. (The variable ¢ varies
from 0 to N.) It can be shown this function satisfies the
modified diffusion equation

s b?
‘L‘]?;%t) - EV2c1p(r,t) —[w,(r) + av, ¥ (r)]g,(r.1),

(10)

with initial condition g,(r,0)=1. In the above equation the
(pseudoexternal) mean field is denoted by w),(r) and is made
up of short-range interactions between particles in the system
[18]. W is the (dimensionless) electric potential, i.e., W
=qilkgT, where ¢q is the electronic charge, and can be de-
termined via the Poisson equation. The Poisson equation in-
volves the dielectric constant €, which in principle varies,
depending on the density of polymer or solvent present at the
particular point in space. Thus we consider a dielectric con-
stant, €(r), which is a function of position, since we assume
55

55 75

45|

30 55 30 45 55

(a) (b)

a strong segregation between polymer and solvent. We also
measure this dielectric constant with respect to a pure poly-
mer phase, so that €(r) is dimensionless (see below for exact
definition). We shall assume monomers are positively
charged on dissociation. Thus for a position dependent ¢, the
Poisson equation becomes

b e(r)V*¥(r) + Ve(r) - V¥ (r)] = - %[avl,qﬁp(r) +u_¢_],

(11)

where « is the degree of dissociation of monomer unit of the
polymer, while v, is the valency of charged monomers and
v_ the valency of counterions. In Eq. (11), ¢, is the dimen-
sionless polymer (probability) density, ¢, the dimensionless
solvent (probability) density, and ¢_ the dimensionless coun-
terion (probability) density. For simplicity, we shall assume
the positional dependent dielectric constant depends linearly
on the density of the phase present at the particular point in
space, i.e.,

(1) = ¢, (1) + (1), (12)
€

Note the dielectric constant, as defined above, is relative to a

pure polymeric phase. In this case e=1. Equations (10)—(12)

represent a coupled set of nonlinear partial differential equa-

tions, which need to be solved numerically. To close the

system we require relationships between the probability dis-

0.8
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0.2
0.1
25 50 75 95

(d)

25 50 75

(c)

FIG. 5. (Color online) SCF results for N=200, y=1 and values of « (from left to right) (a) =0.001, (b) 0.0525, (c) 0.068, and (d) 0.09.
On increasing charge fraction we see a circular globule, then an elliptical globule, a dumbbell, and finally a strip. The scale bar on the
extreme right gives the density to shading equivalence and the length scale is in units of b.
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tribution functions and the polymer density, ¢, and counter-
ion density, ¢_, at any point r. In principle one would like to
have an infinite three-dimensional system with the polymer
chain free to move on the two-dimensional surface plane and
counterions free to move in all space. However, this is not
possible at present due to computational limitations. To pro-
ceed we make some approximations. First, we graft one end
of the polymer chain to the center of the square lattice, which
represents the surface. This does not affect any of the physics
we are interested in, but importantly prevents the polymer
from moving beyond the boundaries. In addition we have to
limit ourselves to a two-dimensional grid, which represents
the surface. The probability distribution function for the
chain starting from the grafted end, which is located at ry, is
denoted by Qp(r,ro,t) and satisfies the modified diffusion
equation

90, (r,ro,t) b?
_Q% — EVQQp(I'J'oJ)

- [Wp(r) + aqu,(r)]Qp(rvr()’l)s (13)

with initial condition Q,(r,ry,0)=d(r-ry). The polymer
density at any point r is then given by

N

dtQp(r»r07 t)qp(rvN - t)
0

&,(r) = (14)

A_l fA dr Qp(r’ I'(),N)

The extra factor in the denominator is introduced to normal-
ize the density appropriately and A represents the total area
of the square domain. The solvent density is determined via
the volume constraint ¢,(r)+¢,(r)=1, while the counterion
density is given by
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FIG. 6. (Color online) Polymer
density (top) and counterion den-
sity (bottom) in the case where
counterions are confined in the vi-
cinity of condensate. SCF results
for N=200, x=1, u=2, e€l/e,
=1.5 and values of « (from left to
right) (a) @=0.0525, (b) 0.065,
and (c) 0.1. On increasing charge
fraction we see a circular globule,
then an elliptical globule, and fi-
nally a “figure-8” or dumbbell.
The scale bar on the right-hand
side gives the density to shading
equivalence and the length scale is
in units of b.
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exp[—w_(r)]
A‘lf exp[— w_(r)]dr
A

¢-(r) = (15)

Last, the mean fields for the polymer and counterions are
given by

wy(r) = x(1 = 2¢,(r)) = In(1 = ¢,(r))

and

w_(r)=v_Y(r), (16)

where y, the Flory-Huggins parameter, measures the degree
of incompatibility between polymer and solvent. Equations
(10)—(16) are appropriately discretized on a two-dimensional
grid and we begin our numerical relaxation procedure from a
random (high temperature) state [12,17], which ensures no
bias in the initial state. The boundary condition on the elec-
tric potential is obtained via Gauss’ Law, i.e.,

f Lav,d,(r) +v_¢_(r)]dr
A

Pb* ’
(17)

where the | subscript indicates a normal component of the
gradient of W and the left-hand side is evaluated on the
boundary of the grid. P is the perimeter length of the bound-
ary, measured in units of b. The boundary condition on the
probability distribution functions (g and Q) is that the normal
component of their spatial gradient is zero. The numerical
equations are iterated until we achieve self-consistency be-
tween the densities, the mean field and electrostatic potential.
In principle, at this point, the system has evolved to a mini-
mum free energy structure. (Note, we have used a criterion
of a relative error of 10~ for self-consistency.)

[E(V\P)L]boundary =—u

A. SCF results

We first assume the counterions are free in solution. For
relatively low charge fraction this approximation is justified,
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although later we will include the presence of counterions.
Thus ¢_ is set to zero in Eq. (11). We first consider N=50,
x=1,u=2, ¢/€,=1.5, v,=+1, and increase a from a=0.0
to 0.23. The sequence of results are shown in Fig. 4. The first
case a=0, results in a circular droplet. This shape persists
until about a=0.16 at which point the droplet takes on a
much more elongated or elliptical shape. In fact, a closer
examination of this transition reveals a rather gradual in-
crease in the eccentricity of the ellipse. Figure 4(b) shows the
globule at «=0.163 where the ellipse has eccentricity of ap-
proximately 0.8, which corresponds to [,=1.7/,. At a=0.17
[Fig. 4(c)], the globule appears to split into two droplets or
beads, although the shape is more indicative of a sinusoidal
undulation or a “figure-8” rather than a dumbbell. The strings
seems to be missing here and is attributable to the small N
for this chain. At the center of the figure-8 the width of the
droplet is about 3.5b, while at the widest part it is 4.6b.
Another important aspect of this structure is that the beads
themselves are not circular but more elongated or elliptical,
as the explicit free energy analysis suggests. At still higher «
[Fig. 4(d)], we see a uniform elongation of the polymer glob-
ule into something which resembles a cigar, or in two dimen-
sions a better description is a strip. At these low values of N
we never see a complete dumbbell form, since the chain is
too short to do this.

We therefore proceed to longer chains, i.e., N=200, with
x=1, u=2, €/€,=15, v,=+1 and increasing « from «
=0.0 to @=0.09. A typical sequence of results is shown in
Fig. 5. The first case, «=0.001, results in a circular globule.
This shape persists until about a=0.045 at which point the
droplet takes on a more elongated shape. We have not inves-
tigated this circular to elliptical transition in detail, but our
results (including many other runs) seem to indicate it is a
continuous change. Figure 5(b) shows the density profile for
a=0.0525, where we see an anisotropic (elliptic) condensate.
The eccentricity of this droplet is calculated to be approxi-
mately 0.75, which corresponds to [,~1.5/,. The elliptical
globule remains until @=0.053, at which point the globule
takes on an elongated, “figure-8” shape. The string in this
case is not clearly defined. [Figure is not shown but is similar
to Fig. 4(c).] As we increase a to a=0.068 the globule takes
on the shape of a dumbbell. This is shown in Fig. 5(c), where
the string is relatively thick. The beads of the dumbbell are
not elongated, but somewhat circular. For higher values of «
these beads do become elliptical themselves, in accordance
with our earlier predictions, from the free energy analysis. At
still higher @ («=0.09) we see an almost uniform elongation
of the droplet to a strip [Fig. 5(d)]. Here the remnants of the
elliptical beads are just visible, if one looks closely at the
two ends of the structure. At these relatively low values of N
we never see more than two beads in the pearl necklace.
Clearly, the chain is too short for it to form more than two
beads. Although our SCF free energy minimization process
does not ensure with absolute certainty that the structures in
Figs. 4 and 5 correspond to the minimum free energy states,
after several reruns from different initial conditions, we have
always found the sequence in Figs. 4 and 5. Thus with high
probability we believe the structures shown in Figs. 4 and 5
are the minimum free energy states.

Next we consider the role of counterions. At this stage,
due to computational limitations, we cannot extend our simu-

PHYSICAL REVIEW E 75, 051802 (2007)

lations to a full three-dimensional lattice. [For example, Fig.
5(a) would take up to a month to run in three dimensions.]
As a result, we cannot rigorously determine the behavior of
the system when counterions are present. However, it is well
known at sufficiently high charge fraction (or sufficiently
poor solvent conditions) counterions will condense on the
charged globule [2,20]. There are a number of possible ef-
fects which may now come into play. For example, the coun-
terions can now screen the long range Coulomb repulsion
and effectively renormalize the length scale of this repulsion.
In turn, this stabilizes larger beads (or conversely the ellipti-
cal condensate) and, overall, the condensate dimensions
should shrink. Hence, we (qualitatively) predict that the tran-
sitions (from circular to elliptical condensate and so on)
should increase with « in the presence of condensed counte-
rions, i.e., the charge fraction for the transition from an el-
liptical globule to a dumbbell should increase in comparison
to the case where counterions do not condense on the glob-
ule. Although we cannot fully determine the role of counte-
rions, we now consider the case where counterions are fully
confined to the two-dimensional plane of the surface and in
the vicinity of the condensate. The counterions could there-
fore be considered to have condensed on the globule.

Figure 6 shows a set of plots for the case where counte-
rions are included in our SCF model, with ¢_ nonzero in Eq.
(11) and v_=-v,. All other parameters are the same as for
Fig. 5. The main difference, compared with Fig. 5, is that the
values of a where the circle, ellipse, and dumbbell are stable
are slightly increased. Note, we have not observed a uni-
formly elongated cigarlike structure. Presumably this is be-
cause the counterions screen the long-range Coulomb repul-
sion, which in turn stabilizes smaller, more compact,
morphological structures. We also plot the counterion den-
sity, but note that the density scale is significantly smaller
(between 100-1000 times smaller) than the polymer density.
In each case the counterion density closely follows the poly-
mer density profile. Thus the main qualitative difference in
having counterions present (so that they can condense on the
polymer globule) is to increase the « transition values. Our
results follow a similar pattern to discussed above, i.e.,
circle — ellipse — dumbbell, except now the transitions are
shifted to higher a. For example, we now observe the figure-
8/dumbbell structure at «=0.1, whereas without counterions
this structure appeared at «=0.053. Although our assumption
on counterion confinement is unrealistic at these low charge
fractions, our results demonstrate counterions stabilize more
compact structures such as the elliptical condensate in com-
parison to the more elongated (dumbbell) structure.

IV. CONCLUSIONS

In this paper, we have considered the shapes of strongly
absorbed charged polymer globules in poor solvents, which
has direct relevance to the imaging of such chains via AFM
or SFA techniques [4,13]. We have shown that strongly ab-
sorbed polyelectrolytes have a different shape (or conforma-
tion) to polyelectrolytes in bulk solution. First, under suffi-
ciently large absorption between the surface and polymer, the
condensate will take up a layerlike (constant thickness) mor-
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phology. Most notably we have predicted a new shape of the
absorbed condensate (in the plane of the surface): An ellip-
tical globule. Both our explicit free energy analysis and the
numerical SCF calculations, which should evolve without
any initial bias to the lowest free energy state, agree qualita-
tively on this prediction. However, the explicit calculations
predict a larger distortion of the elliptical condensate (up to a
semi-major axis three times the length of the semiminor axis)
than the SCF calculations (which have shown a distortion of
semimajor axis about 1.7 times the semiminor axis). The
discrepancy between the size of the distortion is not unex-
pected, given the explicit model does not include entropy of

PHYSICAL REVIEW E 75, 051802 (2007)

chains which, if included, would tend to make the conden-
sates less anisotropic (i.e., see Ref. [12]). In addition, we
predict the beads which make up the pearl necklace may also
be anisotropic. Our explicit free energy calculations imply
the beads of the necklace may have an elliptical shape and
the SCF results [for example, see Figs. 4(c), 5(d), and 6(c)]
sometimes form a dumbbell where the beads have an elon-
gated or elliptical shape. Finally we considered the presence
of condensed counterions which tend to screen the long-
range Coulomb interaction. In turn this stabilizes (more)
compact elliptical morphologies in comparison to the (ex-
tended) dumbbell.
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